| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swoer | Unicode version | ||
| Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| Ref | Expression |
|---|---|
| swoer |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 |
. . . . 5
| |
| 2 | difss 3098 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3029 |
. . . 4
|
| 4 | relxp 4465 |
. . . 4
| |
| 5 | relss 4445 |
. . . 4
| |
| 6 | 3, 4, 5 | mp2 16 |
. . 3
|
| 7 | 6 | a1i 9 |
. 2
|
| 8 | simpr 108 |
. . 3
| |
| 9 | orcom 679 |
. . . . . 6
| |
| 10 | 9 | a1i 9 |
. . . . 5
|
| 11 | 10 | notbid 624 |
. . . 4
|
| 12 | 3 | ssbri 3827 |
. . . . . . 7
|
| 13 | 12 | adantl 271 |
. . . . . 6
|
| 14 | brxp 4393 |
. . . . . 6
| |
| 15 | 13, 14 | sylib 120 |
. . . . 5
|
| 16 | 1 | brdifun 6156 |
. . . . 5
|
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | 15 | simprd 112 |
. . . . 5
|
| 19 | 15 | simpld 110 |
. . . . 5
|
| 20 | 1 | brdifun 6156 |
. . . . 5
|
| 21 | 18, 19, 20 | syl2anc 403 |
. . . 4
|
| 22 | 11, 17, 21 | 3bitr4d 218 |
. . 3
|
| 23 | 8, 22 | mpbid 145 |
. 2
|
| 24 | simprl 497 |
. . . . 5
| |
| 25 | 12 | ad2antrl 473 |
. . . . . . 7
|
| 26 | 14 | simplbi 268 |
. . . . . . 7
|
| 27 | 25, 26 | syl 14 |
. . . . . 6
|
| 28 | 14 | simprbi 269 |
. . . . . . 7
|
| 29 | 25, 28 | syl 14 |
. . . . . 6
|
| 30 | 27, 29, 16 | syl2anc 403 |
. . . . 5
|
| 31 | 24, 30 | mpbid 145 |
. . . 4
|
| 32 | simprr 498 |
. . . . 5
| |
| 33 | 3 | brel 4410 |
. . . . . . . 8
|
| 34 | 33 | simprd 112 |
. . . . . . 7
|
| 35 | 32, 34 | syl 14 |
. . . . . 6
|
| 36 | 1 | brdifun 6156 |
. . . . . 6
|
| 37 | 29, 35, 36 | syl2anc 403 |
. . . . 5
|
| 38 | 32, 37 | mpbid 145 |
. . . 4
|
| 39 | simpl 107 |
. . . . . . 7
| |
| 40 | swoer.3 |
. . . . . . . 8
| |
| 41 | 40 | swopolem 4060 |
. . . . . . 7
|
| 42 | 39, 27, 35, 29, 41 | syl13anc 1171 |
. . . . . 6
|
| 43 | 40 | swopolem 4060 |
. . . . . . . 8
|
| 44 | 39, 35, 27, 29, 43 | syl13anc 1171 |
. . . . . . 7
|
| 45 | orcom 679 |
. . . . . . 7
| |
| 46 | 44, 45 | syl6ibr 160 |
. . . . . 6
|
| 47 | 42, 46 | orim12d 732 |
. . . . 5
|
| 48 | or4 720 |
. . . . 5
| |
| 49 | 47, 48 | syl6ib 159 |
. . . 4
|
| 50 | 31, 38, 49 | mtord 729 |
. . 3
|
| 51 | 1 | brdifun 6156 |
. . . 4
|
| 52 | 27, 35, 51 | syl2anc 403 |
. . 3
|
| 53 | 50, 52 | mpbird 165 |
. 2
|
| 54 | swoer.2 |
. . . . . . 7
| |
| 55 | 54, 40 | swopo 4061 |
. . . . . 6
|
| 56 | poirr 4062 |
. . . . . 6
| |
| 57 | 55, 56 | sylan 277 |
. . . . 5
|
| 58 | pm1.2 705 |
. . . . 5
| |
| 59 | 57, 58 | nsyl 590 |
. . . 4
|
| 60 | simpr 108 |
. . . . 5
| |
| 61 | 1 | brdifun 6156 |
. . . . 5
|
| 62 | 60, 60, 61 | syl2anc 403 |
. . . 4
|
| 63 | 59, 62 | mpbird 165 |
. . 3
|
| 64 | 3 | ssbri 3827 |
. . . . 5
|
| 65 | brxp 4393 |
. . . . . 6
| |
| 66 | 65 | simplbi 268 |
. . . . 5
|
| 67 | 64, 66 | syl 14 |
. . . 4
|
| 68 | 67 | adantl 271 |
. . 3
|
| 69 | 63, 68 | impbida 560 |
. 2
|
| 70 | 7, 23, 53, 69 | iserd 6155 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-po 4051 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-er 6129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |