![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl31anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl31anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3jca 1118 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | sylXanc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | syl31anc.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | syl2anc 403 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: syl32anc 1177 stoic4b 1362 enq0tr 6624 ltmul12a 7938 lt2msq1 7963 ledivp1 7981 lemul1ad 8017 lemul2ad 8018 lediv2ad 8796 difelfznle 9146 expubnd 9533 expcanlem 9643 expcand 9645 dvdsadd 10238 divalgmod 10327 gcdzeq 10411 rplpwr 10416 sqgcd 10418 bezoutr 10421 rpmulgcd2 10477 rpdvds 10481 divgcdodd 10522 oddpwdclemxy 10547 |
Copyright terms: Public domain | W3C validator |