| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difelfznle | Unicode version | ||
| Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| Ref | Expression |
|---|---|
| difelfznle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 9128 |
. . . . . 6
| |
| 2 | nn0addcl 8323 |
. . . . . . . 8
| |
| 3 | 2 | nn0zd 8467 |
. . . . . . 7
|
| 4 | 3 | 3adant3 958 |
. . . . . 6
|
| 5 | 1, 4 | sylbi 119 |
. . . . 5
|
| 6 | elfzelz 9045 |
. . . . 5
| |
| 7 | zsubcl 8392 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anr 284 |
. . . 4
|
| 9 | 8 | 3adant3 958 |
. . 3
|
| 10 | 6 | zred 8469 |
. . . . . . 7
|
| 11 | 10 | adantr 270 |
. . . . . 6
|
| 12 | elfzel2 9043 |
. . . . . . . 8
| |
| 13 | 12 | zred 8469 |
. . . . . . 7
|
| 14 | 13 | adantr 270 |
. . . . . 6
|
| 15 | nn0readdcl 8347 |
. . . . . . . . 9
| |
| 16 | 15 | 3adant3 958 |
. . . . . . . 8
|
| 17 | 1, 16 | sylbi 119 |
. . . . . . 7
|
| 18 | 17 | adantl 271 |
. . . . . 6
|
| 19 | elfzle2 9047 |
. . . . . . 7
| |
| 20 | elfzle1 9046 |
. . . . . . . 8
| |
| 21 | nn0re 8297 |
. . . . . . . . . . . 12
| |
| 22 | nn0re 8297 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | anim12ci 332 |
. . . . . . . . . . 11
|
| 24 | 23 | 3adant3 958 |
. . . . . . . . . 10
|
| 25 | 1, 24 | sylbi 119 |
. . . . . . . . 9
|
| 26 | addge02 7577 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | 20, 27 | mpbid 145 |
. . . . . . 7
|
| 29 | 19, 28 | anim12i 331 |
. . . . . 6
|
| 30 | letr 7194 |
. . . . . . 7
| |
| 31 | 30 | imp 122 |
. . . . . 6
|
| 32 | 11, 14, 18, 29, 31 | syl31anc 1172 |
. . . . 5
|
| 33 | 32 | 3adant3 958 |
. . . 4
|
| 34 | zre 8355 |
. . . . . . . 8
| |
| 35 | 21, 22 | anim12i 331 |
. . . . . . . . . . 11
|
| 36 | 35 | 3adant3 958 |
. . . . . . . . . 10
|
| 37 | 1, 36 | sylbi 119 |
. . . . . . . . 9
|
| 38 | readdcl 7099 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | 34, 39 | anim12ci 332 |
. . . . . . 7
|
| 41 | 6, 40 | sylan 277 |
. . . . . 6
|
| 42 | 41 | 3adant3 958 |
. . . . 5
|
| 43 | subge0 7579 |
. . . . 5
| |
| 44 | 42, 43 | syl 14 |
. . . 4
|
| 45 | 33, 44 | mpbird 165 |
. . 3
|
| 46 | elnn0z 8364 |
. . 3
| |
| 47 | 9, 45, 46 | sylanbrc 408 |
. 2
|
| 48 | elfz3nn0 9131 |
. . 3
| |
| 49 | 48 | 3ad2ant1 959 |
. 2
|
| 50 | elfzelz 9045 |
. . . . . 6
| |
| 51 | zltnle 8397 |
. . . . . . . 8
| |
| 52 | 51 | ancoms 264 |
. . . . . . 7
|
| 53 | zre 8355 |
. . . . . . . 8
| |
| 54 | ltle 7198 |
. . . . . . . 8
| |
| 55 | 53, 34, 54 | syl2anr 284 |
. . . . . . 7
|
| 56 | 52, 55 | sylbird 168 |
. . . . . 6
|
| 57 | 6, 50, 56 | syl2an 283 |
. . . . 5
|
| 58 | 57 | 3impia 1135 |
. . . 4
|
| 59 | 50 | zred 8469 |
. . . . . . 7
|
| 60 | 59 | adantl 271 |
. . . . . 6
|
| 61 | 60, 11, 14 | leadd1d 7639 |
. . . . 5
|
| 62 | 61 | 3adant3 958 |
. . . 4
|
| 63 | 58, 62 | mpbid 145 |
. . 3
|
| 64 | 18, 11, 14 | lesubadd2d 7644 |
. . . 4
|
| 65 | 64 | 3adant3 958 |
. . 3
|
| 66 | 63, 65 | mpbird 165 |
. 2
|
| 67 | elfz2nn0 9128 |
. 2
| |
| 68 | 47, 49, 66, 67 | syl3anbrc 1122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |