ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul12a Unicode version

Theorem ltmul12a 7938
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 499 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  e.  RR )
2 simpllr 500 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  B  e.  RR )
3 simpll 495 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  C  e.  RR )
4 simprl 497 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  0  <_  C )
53, 4jca 300 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  ( C  e.  RR  /\  0  <_  C ) )
65ad2ant2l 491 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
7 ltle 7198 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
87imp 122 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98adantrl 461 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <_  B )
109ad2ant2r 492 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  <_  B
)
11 lemul1a 7936 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
121, 2, 6, 10, 11syl31anc 1172 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
13 simplrl 501 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  C  e.  RR )
14 simplrr 502 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  D  e.  RR )
15 simpllr 500 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  B  e.  RR )
16 0re 7119 . . . . . . . . . 10  |-  0  e.  RR
17 lelttr 7199 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
1816, 17mp3an1 1255 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
1918imp 122 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
2019adantlr 460 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  0  <  B )
21 ltmul2 7934 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D ) ) )
2213, 14, 15, 20, 21syl112anc 1173 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  ( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D )
) )
2322biimpa 290 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  /\  C  < 
D )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2423anasss 391 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  C  <  D ) )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2524adantrrl 469 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( B  x.  C )  <  ( B  x.  D )
)
26 remulcl 7101 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
2726ad2ant2r 492 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  C
)  e.  RR )
28 remulcl 7101 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
2928ad2ant2lr 493 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  C
)  e.  RR )
30 remulcl 7101 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
3130ad2ant2l 491 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  D
)  e.  RR )
32 lelttr 7199 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3327, 29, 31, 32syl3anc 1169 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  <_ 
( B  x.  C
)  /\  ( B  x.  C )  <  ( B  x.  D )
)  ->  ( A  x.  C )  <  ( B  x.  D )
) )
3433adantr 270 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3512, 25, 34mp2and 423 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
3635an4s 552 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981    x. cmul 6986    < clt 7153    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  ltmul12ad  8019
  Copyright terms: Public domain W3C validator