ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniiunlem Unicode version

Theorem uniiunlem 3082
Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C
) )
Distinct variable groups:    x, y    y, A    y, B    x, C
Allowed substitution hints:    A( x)    B( x)    C( y)    D( x, y)

Proof of Theorem uniiunlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . . . . 6  |-  ( y  =  z  ->  (
y  =  B  <->  z  =  B ) )
21rexbidv 2369 . . . . 5  |-  ( y  =  z  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  z  =  B ) )
32cbvabv 2202 . . . 4  |-  { y  |  E. x  e.  A  y  =  B }  =  { z  |  E. x  e.  A  z  =  B }
43sseq1i 3023 . . 3  |-  ( { y  |  E. x  e.  A  y  =  B }  C_  C  <->  { z  |  E. x  e.  A  z  =  B }  C_  C )
5 r19.23v 2469 . . . . 5  |-  ( A. x  e.  A  (
z  =  B  -> 
z  e.  C )  <-> 
( E. x  e.  A  z  =  B  ->  z  e.  C
) )
65albii 1399 . . . 4  |-  ( A. z A. x  e.  A  ( z  =  B  ->  z  e.  C
)  <->  A. z ( E. x  e.  A  z  =  B  ->  z  e.  C ) )
7 ralcom4 2621 . . . 4  |-  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. z A. x  e.  A  ( z  =  B  ->  z  e.  C
) )
8 abss 3063 . . . 4  |-  ( { z  |  E. x  e.  A  z  =  B }  C_  C  <->  A. z
( E. x  e.  A  z  =  B  ->  z  e.  C
) )
96, 7, 83bitr4i 210 . . 3  |-  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  { z  |  E. x  e.  A  z  =  B }  C_  C )
104, 9bitr4i 185 . 2  |-  ( { y  |  E. x  e.  A  y  =  B }  C_  C  <->  A. x  e.  A  A. z
( z  =  B  ->  z  e.  C
) )
11 nfv 1461 . . . . 5  |-  F/ z  B  e.  C
12 eleq1 2141 . . . . 5  |-  ( z  =  B  ->  (
z  e.  C  <->  B  e.  C ) )
1311, 12ceqsalg 2627 . . . 4  |-  ( B  e.  D  ->  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C ) )
1413ralimi 2426 . . 3  |-  ( A. x  e.  A  B  e.  D  ->  A. x  e.  A  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C ) )
15 ralbi 2489 . . 3  |-  ( A. x  e.  A  ( A. z ( z  =  B  ->  z  e.  C )  <->  B  e.  C )  ->  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. x  e.  A  B  e.  C ) )
1614, 15syl 14 . 2  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  A. z ( z  =  B  ->  z  e.  C )  <->  A. x  e.  A  B  e.  C ) )
1710, 16syl5rbb 191 1  |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator