![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbb | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5rbb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5rbb.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bb 190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl5rbbr 193 pm5.17dc 843 dn1dc 901 csbabg 2963 uniiunlem 3082 inimasn 4761 cnvpom 4880 fnresdisj 5029 f1oiso 5485 reldm 5832 1idprl 6780 1idpru 6781 nndiv 8079 fzn 9061 fz1sbc 9113 bj-indeq 10724 |
Copyright terms: Public domain | W3C validator |