ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5rbb Unicode version

Theorem syl5rbb 191
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl5rbb.1  |-  ( ph  <->  ps )
syl5rbb.2  |-  ( ch 
->  ( ps  <->  th )
)
Assertion
Ref Expression
syl5rbb  |-  ( ch 
->  ( th  <->  ph ) )

Proof of Theorem syl5rbb
StepHypRef Expression
1 syl5rbb.1 . . 3  |-  ( ph  <->  ps )
2 syl5rbb.2 . . 3  |-  ( ch 
->  ( ps  <->  th )
)
31, 2syl5bb 190 . 2  |-  ( ch 
->  ( ph  <->  th )
)
43bicomd 139 1  |-  ( ch 
->  ( th  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  syl5rbbr  193  pm5.17dc  843  dn1dc  901  csbabg  2963  uniiunlem  3082  inimasn  4761  cnvpom  4880  fnresdisj  5029  f1oiso  5485  reldm  5832  1idprl  6780  1idpru  6781  nndiv  8079  fzn  9061  fz1sbc  9113  bj-indeq  10724
  Copyright terms: Public domain W3C validator