ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm Unicode version

Theorem xpcanm 4780
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 4778 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
2 ssxp2 4778 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  B )  C_  ( C  X.  A )  <->  B  C_  A
) )
31, 2anbi12d 456 . 2  |-  ( E. x  x  e.  C  ->  ( ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) )  <-> 
( A  C_  B  /\  B  C_  A ) ) )
4 eqss 3014 . 2  |-  ( ( C  X.  A )  =  ( C  X.  B )  <->  ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) ) )
5 eqss 3014 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
63, 4, 53bitr4g 221 1  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433    C_ wss 2973    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator