ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11m Unicode version

Theorem xpid11m 4575
Description: The cross product of a class with itself is one-to-one. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
xpid11m  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem xpid11m
StepHypRef Expression
1 dmxpm 4573 . . . . . 6  |-  ( E. x  x  e.  A  ->  dom  ( A  X.  A )  =  A )
21adantr 270 . . . . 5  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  dom  ( A  X.  A )  =  A )
3 dmeq 4553 . . . . 5  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
42, 3sylan9req 2134 . . . 4  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  A  =  dom  ( B  X.  B
) )
5 dmxpm 4573 . . . . 5  |-  ( E. x  x  e.  B  ->  dom  ( B  X.  B )  =  B )
65ad2antlr 472 . . . 4  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  dom  ( B  X.  B )  =  B )
74, 6eqtrd 2113 . . 3  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  A  =  B )
87ex 113 . 2  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B ) )
9 xpeq12 4382 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
109anidms 389 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
118, 10impbid1 140 1  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433    X. cxp 4361   dom cdm 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-dm 4373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator