ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiderm Unicode version

Theorem xpiderm 6200
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by Jim Kingdon, 22-Aug-2019.)
Assertion
Ref Expression
xpiderm  |-  ( E. x  x  e.  A  ->  ( A  X.  A
)  Er  A )
Distinct variable group:    x, A

Proof of Theorem xpiderm
StepHypRef Expression
1 relxp 4465 . . 3  |-  Rel  ( A  X.  A )
21a1i 9 . 2  |-  ( E. x  x  e.  A  ->  Rel  ( A  X.  A ) )
3 dmxpm 4573 . 2  |-  ( E. x  x  e.  A  ->  dom  ( A  X.  A )  =  A )
4 cnvxp 4762 . . . 4  |-  `' ( A  X.  A )  =  ( A  X.  A )
5 xpidtr 4735 . . . 4  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
6 uneq1 3119 . . . . 5  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) ) )
7 unss2 3143 . . . . 5  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) ) )
8 unidm 3115 . . . . . 6  |-  ( ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A
)
9 eqtr 2098 . . . . . . 7  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  =  ( A  X.  A ) )
10 sseq2 3021 . . . . . . . 8  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  <-> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
1110biimpd 142 . . . . . . 7  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
129, 11syl 14 . . . . . 6  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
138, 12mpan2 415 . . . . 5  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( ( A  X.  A )  u.  ( A  X.  A
) )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
146, 7, 13syl2im 38 . . . 4  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( ( ( A  X.  A )  o.  ( A  X.  A
) )  C_  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
154, 5, 14mp2 16 . . 3  |-  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A )
1615a1i 9 . 2  |-  ( E. x  x  e.  A  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) )
17 df-er 6129 . 2  |-  ( ( A  X.  A )  Er  A  <->  ( Rel  ( A  X.  A
)  /\  dom  ( A  X.  A )  =  A  /\  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) ) )
182, 3, 16, 17syl3anbrc 1122 1  |-  ( E. x  x  e.  A  ->  ( A  X.  A
)  Er  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433    u. cun 2971    C_ wss 2973    X. cxp 4361   `'ccnv 4362   dom cdm 4363    o. ccom 4367   Rel wrel 4368    Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-er 6129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator