| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zextle | Unicode version | ||
| Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
| Ref | Expression |
|---|---|
| zextle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 8355 |
. . . . . . . . 9
| |
| 2 | 1 | leidd 7615 |
. . . . . . . 8
|
| 3 | 2 | adantr 270 |
. . . . . . 7
|
| 4 | breq1 3788 |
. . . . . . . . 9
| |
| 5 | breq1 3788 |
. . . . . . . . 9
| |
| 6 | 4, 5 | bibi12d 233 |
. . . . . . . 8
|
| 7 | 6 | rspcva 2699 |
. . . . . . 7
|
| 8 | 3, 7 | mpbid 145 |
. . . . . 6
|
| 9 | 8 | adantlr 460 |
. . . . 5
|
| 10 | zre 8355 |
. . . . . . . . 9
| |
| 11 | 10 | leidd 7615 |
. . . . . . . 8
|
| 12 | 11 | adantr 270 |
. . . . . . 7
|
| 13 | breq1 3788 |
. . . . . . . . 9
| |
| 14 | breq1 3788 |
. . . . . . . . 9
| |
| 15 | 13, 14 | bibi12d 233 |
. . . . . . . 8
|
| 16 | 15 | rspcva 2699 |
. . . . . . 7
|
| 17 | 12, 16 | mpbird 165 |
. . . . . 6
|
| 18 | 17 | adantll 459 |
. . . . 5
|
| 19 | 9, 18 | jca 300 |
. . . 4
|
| 20 | 19 | ex 113 |
. . 3
|
| 21 | letri3 7192 |
. . . 4
| |
| 22 | 1, 10, 21 | syl2an 283 |
. . 3
|
| 23 | 20, 22 | sylibrd 167 |
. 2
|
| 24 | 23 | 3impia 1135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-apti 7091 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-iota 4887 df-fv 4930 df-ov 5535 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-neg 7282 df-z 8352 |
| This theorem is referenced by: zextlt 8439 |
| Copyright terms: Public domain | W3C validator |