| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | GIF version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd | ⊢ (𝜑 → 0 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 7111 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 0 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 1433 ℂcc 6979 0cc0 6981 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-mulcl 7074 ax-i2m1 7081 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: mulap0r 7715 mulap0 7744 diveqap0 7770 eqneg 7820 prodgt0 7930 un0addcl 8321 un0mulcl 8322 modsumfzodifsn 9398 iser0 9471 iser0f 9472 abs00ap 9948 abssubne0 9977 clim0c 10125 |
| Copyright terms: Public domain | W3C validator |