ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 GIF version

Theorem nn0eln0 4359
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4358 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2 noel 3255 . . . . 5 ¬ ∅ ∈ ∅
3 eleq2 2142 . . . . 5 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
42, 3mtbiri 632 . . . 4 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
5 nner 2249 . . . 4 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
64, 52falsed 650 . . 3 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴 ≠ ∅))
7 id 19 . . . 4 (∅ ∈ 𝐴 → ∅ ∈ 𝐴)
8 ne0i 3257 . . . 4 (∅ ∈ 𝐴𝐴 ≠ ∅)
97, 82thd 173 . . 3 (∅ ∈ 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
106, 9jaoi 668 . 2 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴𝐴 ≠ ∅))
111, 10syl 14 1 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wo 661   = wceq 1284  wcel 1433  wne 2245  c0 3251  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  nnmord  6113
  Copyright terms: Public domain W3C validator