ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th GIF version

Theorem 2th 172
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1 𝜑
2th.2 𝜓
Assertion
Ref Expression
2th (𝜑𝜓)

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 2th.1 . . 3 𝜑
43a1i 9 . 2 (𝜓𝜑)
52, 4impbii 124 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  trujust  1286  dftru2  1292  bitru  1296  vjust  2602  pwv  3600  int0  3650  0iin  3736  snnex  4199  ruv  4293  fo1st  5804  fo2nd  5805  eqer  6161  ener  6282  rexfiuz  9875  bdth  10622
  Copyright terms: Public domain W3C validator