ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd GIF version

Theorem fo2nd 5805
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . . 6 𝑥 ∈ V
21snex 3957 . . . . 5 {𝑥} ∈ V
32rnex 4617 . . . 4 ran {𝑥} ∈ V
43uniex 4192 . . 3 ran {𝑥} ∈ V
5 df-2nd 5788 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
64, 5fnmpti 5047 . 2 2nd Fn V
75rnmpt 4600 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
8 vex 2604 . . . . 5 𝑦 ∈ V
98, 8opex 3984 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op2nda 4825 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2085 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
12 sneq 3409 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312rneqd 4581 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413unieqd 3612 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1514eqeq2d 2092 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = ran {𝑥} ↔ 𝑦 = ran {⟨𝑦, 𝑦⟩}))
1615rspcev 2701 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
179, 11, 16mp2an 416 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
188, 172th 172 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1918abbi2i 2193 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
207, 19eqtr4i 2104 . 2 ran 2nd = V
21 df-fo 4928 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
226, 20, 21mpbir2an 883 1 2nd :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  {cab 2067  wrex 2349  Vcvv 2601  {csn 3398  cop 3401   cuni 3601  ran crn 4364   Fn wfn 4917  ontowfo 4920  2nd c2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-fo 4928  df-2nd 5788
This theorem is referenced by:  2ndcof  5811  2ndexg  5815  df2nd2  5861  2ndconst  5863
  Copyright terms: Public domain W3C validator