ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqer GIF version

Theorem eqer 6161
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqer 𝑅 Er V
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem eqer
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21relopabi 4481 . . . 4 Rel 𝑅
32a1i 9 . . 3 (⊤ → Rel 𝑅)
4 id 19 . . . . . 6 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
54eqcomd 2086 . . . . 5 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
6 eqer.1 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
76, 1eqerlem 6160 . . . . 5 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
86, 1eqerlem 6160 . . . . 5 (𝑤𝑅𝑧𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
95, 7, 83imtr4i 199 . . . 4 (𝑧𝑅𝑤𝑤𝑅𝑧)
109adantl 271 . . 3 ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧)
11 eqtr 2098 . . . . 5 ((𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
126, 1eqerlem 6160 . . . . . 6 (𝑤𝑅𝑣𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
137, 12anbi12i 447 . . . . 5 ((𝑧𝑅𝑤𝑤𝑅𝑣) ↔ (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴))
146, 1eqerlem 6160 . . . . 5 (𝑧𝑅𝑣𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
1511, 13, 143imtr4i 199 . . . 4 ((𝑧𝑅𝑤𝑤𝑅𝑣) → 𝑧𝑅𝑣)
1615adantl 271 . . 3 ((⊤ ∧ (𝑧𝑅𝑤𝑤𝑅𝑣)) → 𝑧𝑅𝑣)
17 vex 2604 . . . . 5 𝑧 ∈ V
18 eqid 2081 . . . . . 6 𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
196, 1eqerlem 6160 . . . . . 6 (𝑧𝑅𝑧𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2018, 19mpbir 144 . . . . 5 𝑧𝑅𝑧
2117, 202th 172 . . . 4 (𝑧 ∈ V ↔ 𝑧𝑅𝑧)
2221a1i 9 . . 3 (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧))
233, 10, 16, 22iserd 6155 . 2 (⊤ → 𝑅 Er V)
2423trud 1293 1 𝑅 Er V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wtru 1285  wcel 1433  Vcvv 2601  csb 2908   class class class wbr 3785  {copab 3838  Rel wrel 4368   Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-er 6129
This theorem is referenced by:  ider  6162
  Copyright terms: Public domain W3C validator