| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo1st | GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 3957 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | dmex 4616 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 4 | 3 | uniex 4192 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 5 | df-1st 5787 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 6 | 4, 5 | fnmpti 5047 | . 2 ⊢ 1st Fn V |
| 7 | 5 | rnmpt 4600 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 8 | vex 2604 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 3984 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op1sta 4822 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2085 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 12 | sneq 3409 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | dmeqd 4555 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3612 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2092 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2701 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 9, 11, 16 | mp2an 416 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 18 | 8, 17 | 2th 172 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 19 | 18 | abbi2i 2193 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 20 | 7, 19 | eqtr4i 2104 | . 2 ⊢ ran 1st = V |
| 21 | df-fo 4928 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 22 | 6, 20, 21 | mpbir2an 883 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 {cab 2067 ∃wrex 2349 Vcvv 2601 {csn 3398 〈cop 3401 ∪ cuni 3601 dom cdm 4363 ran crn 4364 Fn wfn 4917 –onto→wfo 4920 1st c1st 5785 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-fo 4928 df-1st 5787 |
| This theorem is referenced by: 1stcof 5810 1stexg 5814 df1st2 5860 1stconst 5862 algrflem 5870 algrflemg 5871 |
| Copyright terms: Public domain | W3C validator |