| Step | Hyp | Ref
| Expression |
| 1 | | raleq 2549 |
. . . 4
⊢ (𝑥 = ∅ → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ ∅ 𝜑)) |
| 2 | 1 | rexralbidv 2392 |
. . 3
⊢ (𝑥 = ∅ → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑)) |
| 3 | | raleq 2549 |
. . 3
⊢ (𝑥 = ∅ → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 4 | 2, 3 | bibi12d 233 |
. 2
⊢ (𝑥 = ∅ → ((∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 5 | | raleq 2549 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑦 𝜑)) |
| 6 | 5 | rexralbidv 2392 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑)) |
| 7 | | raleq 2549 |
. . 3
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 8 | 6, 7 | bibi12d 233 |
. 2
⊢ (𝑥 = 𝑦 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 9 | | raleq 2549 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑)) |
| 10 | 9 | rexralbidv 2392 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑)) |
| 11 | | raleq 2549 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 12 | 10, 11 | bibi12d 233 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 13 | | raleq 2549 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝐴 𝜑)) |
| 14 | 13 | rexralbidv 2392 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑)) |
| 15 | | raleq 2549 |
. . 3
⊢ (𝑥 = 𝐴 → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 16 | 14, 15 | bibi12d 233 |
. 2
⊢ (𝑥 = 𝐴 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 17 | | 0z 8362 |
. . . . 5
⊢ 0 ∈
ℤ |
| 18 | | elex2 2615 |
. . . . 5
⊢ (0 ∈
ℤ → ∃𝑗
𝑗 ∈
ℤ) |
| 19 | 17, 18 | ax-mp 7 |
. . . 4
⊢
∃𝑗 𝑗 ∈ ℤ |
| 20 | | ral0 3342 |
. . . . 5
⊢
∀𝑛 ∈
∅ 𝜑 |
| 21 | 20 | rgen2w 2419 |
. . . 4
⊢
∀𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 |
| 22 | | r19.2m 3329 |
. . . 4
⊢
((∃𝑗 𝑗 ∈ ℤ ∧
∀𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑) |
| 23 | 19, 21, 22 | mp2an 416 |
. . 3
⊢
∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 |
| 24 | | ral0 3342 |
. . 3
⊢
∀𝑛 ∈
∅ ∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 |
| 25 | 23, 24 | 2th 172 |
. 2
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
| 26 | | anbi1 453 |
. . . 4
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 27 | | rexanuz 9874 |
. . . . 5
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
| 28 | | ralunb 3153 |
. . . . . . 7
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
| 29 | 28 | ralbii 2372 |
. . . . . 6
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
| 30 | 29 | rexbii 2373 |
. . . . 5
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
| 31 | | vex 2604 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 32 | | ralsnsg 3430 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ [𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 33 | | ralcom 2517 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
| 34 | | ralsnsg 3430 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 35 | 33, 34 | syl5bb 190 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 36 | 35 | rexbidv 2369 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 37 | | sbcrex 2893 |
. . . . . . . . 9
⊢
([𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
| 38 | 36, 37 | syl6rbbr 197 |
. . . . . . . 8
⊢ (𝑧 ∈ V → ([𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
| 39 | 32, 38 | bitrd 186 |
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
| 40 | 31, 39 | ax-mp 7 |
. . . . . 6
⊢
(∀𝑛 ∈
{𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑) |
| 41 | 40 | anbi2i 444 |
. . . . 5
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
| 42 | 27, 30, 41 | 3bitr4i 210 |
. . . 4
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 43 | | ralunb 3153 |
. . . 4
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ (∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 44 | 26, 42, 43 | 3bitr4g 221 |
. . 3
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 45 | 44 | a1i 9 |
. 2
⊢ (𝑦 ∈ Fin →
((∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
| 46 | 4, 8, 12, 16, 25, 45 | findcard2 6373 |
1
⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |