| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5198 |
. . . . . 6
⊢ (𝑤 = 1 → (𝐹‘𝑤) = (𝐹‘1)) |
| 2 | 1 | oveq1d 5547 |
. . . . 5
⊢ (𝑤 = 1 → ((𝐹‘𝑤)↑2) = ((𝐹‘1)↑2)) |
| 3 | 2 | breq2d 3797 |
. . . 4
⊢ (𝑤 = 1 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘1)↑2))) |
| 4 | 3 | imbi2d 228 |
. . 3
⊢ (𝑤 = 1 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘1)↑2)))) |
| 5 | | fveq2 5198 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
| 6 | 5 | oveq1d 5547 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑘)↑2)) |
| 7 | 6 | breq2d 3797 |
. . . 4
⊢ (𝑤 = 𝑘 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑘)↑2))) |
| 8 | 7 | imbi2d 228 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)))) |
| 9 | | fveq2 5198 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) |
| 10 | 9 | oveq1d 5547 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2)) |
| 11 | 10 | breq2d 3797 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) |
| 12 | 11 | imbi2d 228 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
| 13 | | fveq2 5198 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝐹‘𝑤) = (𝐹‘𝑁)) |
| 14 | 13 | oveq1d 5547 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑁)↑2)) |
| 15 | 14 | breq2d 3797 |
. . . 4
⊢ (𝑤 = 𝑁 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑁)↑2))) |
| 16 | 15 | imbi2d 228 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2)))) |
| 17 | | resqrexlemex.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 18 | 17 | resqcld 9631 |
. . . . . 6
⊢ (𝜑 → (𝐴↑2) ∈ ℝ) |
| 19 | | 2re 8109 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 20 | 19 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
| 21 | 20, 17 | remulcld 7149 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ∈
ℝ) |
| 22 | 18, 21 | readdcld 7148 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) ∈ ℝ) |
| 23 | | 1red 7134 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 24 | 22, 23 | readdcld 7148 |
. . . . 5
⊢ (𝜑 → (((𝐴↑2) + (2 · 𝐴)) + 1) ∈ ℝ) |
| 25 | 17 | recnd 7147 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 26 | 25 | mulid2d 7137 |
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| 27 | | resqrexlemex.agt0 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) |
| 28 | | 1le2 8239 |
. . . . . . . . 9
⊢ 1 ≤
2 |
| 29 | | lemul1a 7936 |
. . . . . . . . 9
⊢ (((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 1 ≤ 2) → (1
· 𝐴) ≤ (2
· 𝐴)) |
| 30 | 28, 29 | mpan2 415 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (1 · 𝐴) ≤ (2 · 𝐴)) |
| 31 | 23, 20, 17, 27, 30 | syl112anc 1173 |
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) ≤ (2 · 𝐴)) |
| 32 | 26, 31 | eqbrtrrd 3807 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ (2 · 𝐴)) |
| 33 | 17 | sqge0d 9632 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| 34 | 21, 18 | addge02d 7634 |
. . . . . . 7
⊢ (𝜑 → (0 ≤ (𝐴↑2) ↔ (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴)))) |
| 35 | 33, 34 | mpbid 145 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴))) |
| 36 | 17, 21, 22, 32, 35 | letrd 7233 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ ((𝐴↑2) + (2 · 𝐴))) |
| 37 | 22 | ltp1d 8008 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) < (((𝐴↑2) + (2 · 𝐴)) + 1)) |
| 38 | 17, 22, 24, 36, 37 | lelttrd 7234 |
. . . 4
⊢ (𝜑 → 𝐴 < (((𝐴↑2) + (2 · 𝐴)) + 1)) |
| 39 | | resqrexlemex.seq |
. . . . . . . 8
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}),
ℝ+) |
| 40 | 39, 17, 27 | resqrexlemf1 9894 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) |
| 41 | | 1cnd 7135 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
| 42 | 41, 25 | addcomd 7259 |
. . . . . . 7
⊢ (𝜑 → (1 + 𝐴) = (𝐴 + 1)) |
| 43 | 40, 42 | eqtrd 2113 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) = (𝐴 + 1)) |
| 44 | 43 | oveq1d 5547 |
. . . . 5
⊢ (𝜑 → ((𝐹‘1)↑2) = ((𝐴 + 1)↑2)) |
| 45 | | binom21 9586 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
| 46 | 25, 45 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
| 47 | 44, 46 | eqtrd 2113 |
. . . 4
⊢ (𝜑 → ((𝐹‘1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
| 48 | 38, 47 | breqtrrd 3811 |
. . 3
⊢ (𝜑 → 𝐴 < ((𝐹‘1)↑2)) |
| 49 | 39, 17, 27 | resqrexlemf 9893 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 50 | 49 | ffvelrnda 5323 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈
ℝ+) |
| 51 | 50 | rpred 8773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
| 52 | 17 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 53 | 52, 50 | rerpdivcld 8805 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℝ) |
| 54 | 51, 53 | resubcld 7485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
| 55 | 54 | adantr 270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
| 56 | 55 | resqcld 9631 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℝ) |
| 57 | | 4re 8116 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 58 | 57 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 ∈
ℝ) |
| 59 | 51 | resqcld 9631 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℝ) |
| 60 | 59, 52 | resubcld 7485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) |
| 61 | 60 | adantr 270 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) |
| 62 | 51 | adantr 270 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℝ) |
| 63 | 52, 59 | posdifd 7632 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) ↔ 0 < (((𝐹‘𝑘)↑2) − 𝐴))) |
| 64 | 63 | biimpa 290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘)↑2) − 𝐴)) |
| 65 | 50 | rpgt0d 8776 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < (𝐹‘𝑘)) |
| 66 | 65 | adantr 270 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (𝐹‘𝑘)) |
| 67 | 61, 62, 64, 66 | divgt0d 8013 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘))) |
| 68 | 51 | recnd 7147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 69 | 68 | sqcld 9603 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℂ) |
| 70 | 69 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) ∈ ℂ) |
| 71 | 25 | adantr 270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 72 | 71 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℂ) |
| 73 | 68 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℂ) |
| 74 | 50 | rpap0d 8779 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) # 0) |
| 75 | 74 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) # 0) |
| 76 | 70, 72, 73, 75 | divsubdirapd 7916 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘)))) |
| 77 | 73 | sqvald 9602 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) = ((𝐹‘𝑘) · (𝐹‘𝑘))) |
| 78 | 77 | oveq1d 5547 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘))) |
| 79 | 73, 73, 75 | divcanap3d 7882 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘)) = (𝐹‘𝑘)) |
| 80 | 78, 79 | eqtrd 2113 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (𝐹‘𝑘)) |
| 81 | 80 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘))) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
| 82 | 76, 81 | eqtrd 2113 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
| 83 | 67, 82 | breqtrd 3809 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
| 84 | 55, 83 | gt0ap0d 7728 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) # 0) |
| 85 | 55, 84 | sqgt0apd 9633 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2)) |
| 86 | | 4pos 8136 |
. . . . . . . . . 10
⊢ 0 <
4 |
| 87 | 86 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < 4) |
| 88 | 56, 58, 85, 87 | divgt0d 8013 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4)) |
| 89 | 57, 86 | gt0ap0ii 7727 |
. . . . . . . . . . 11
⊢ 4 #
0 |
| 90 | 89 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 # 0) |
| 91 | 56, 58, 90 | redivclapd 7920 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ∈
ℝ) |
| 92 | 52 | adantr 270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℝ) |
| 93 | 91, 92 | ltaddpos2d 7630 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
| 94 | 88, 93 | mpbid 145 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
| 95 | 39, 17, 27 | resqrexlemfp1 9895 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) |
| 96 | 95 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2)) |
| 97 | 51, 53 | readdcld 7148 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
| 98 | 97 | recnd 7147 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℂ) |
| 99 | | 2cnd 8112 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) |
| 100 | | 2ap0 8132 |
. . . . . . . . . . . . . . 15
⊢ 2 #
0 |
| 101 | 100 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 #
0) |
| 102 | 98, 99, 101 | sqdivapd 9618 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) |
| 103 | 96, 102 | eqtrd 2113 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) |
| 104 | | sq2 9571 |
. . . . . . . . . . . . 13
⊢
(2↑2) = 4 |
| 105 | 104 | oveq2i 5543 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2)) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) |
| 106 | 103, 105 | syl6eq 2129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4)) |
| 107 | 71, 68, 74 | divcanap2d 7879 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))) = 𝐴) |
| 108 | 107 | oveq2d 5548 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘)))) = (2 · 𝐴)) |
| 109 | 108 | oveq2d 5548 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) |
| 110 | 109 | oveq1d 5547 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 111 | 110 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
| 112 | 53 | recnd 7147 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℂ) |
| 113 | | binom2sub 9587 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 114 | 68, 112, 113 | syl2anc 403 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 115 | 114 | oveq1d 5547 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
| 116 | | binom2 9585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 117 | 68, 112, 116 | syl2anc 403 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 118 | 108 | oveq2d 5548 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) |
| 119 | 118 | oveq1d 5547 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 120 | 117, 119 | eqtrd 2113 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 121 | 99, 71 | mulcld 7139 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℂ) |
| 122 | 121 | negcld 7406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -(2 · 𝐴) ∈
ℂ) |
| 123 | | 4cn 8117 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℂ |
| 124 | 123 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℂ) |
| 125 | 124, 71 | mulcld 7139 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℂ) |
| 126 | 69, 122, 125 | addassd 7141 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴)))) |
| 127 | 69, 121 | negsubd 7425 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + -(2 · 𝐴)) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) |
| 128 | 127 | oveq1d 5547 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) |
| 129 | | 2cn 8110 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℂ |
| 130 | 129 | negcli 7376 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -2 ∈
ℂ |
| 131 | 130, 129,
129 | addassi 7127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = (-2 + (2 + 2)) |
| 132 | 129 | subidi 7379 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2
− 2) = 0 |
| 133 | 132 | negeqi 7302 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = -0 |
| 134 | 129, 129 | negsubdii 7393 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = (-2 + 2) |
| 135 | | neg0 7354 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 |
| 136 | 133, 134,
135 | 3eqtr3i 2109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (-2 + 2)
= 0 |
| 137 | 136 | oveq1i 5542 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-2 + 2)
+ 2) = (0 + 2) |
| 138 | 129 | addid2i 7251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 + 2) =
2 |
| 139 | 137, 138 | eqtri 2101 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = 2 |
| 140 | | 2p2e4 8159 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 + 2) =
4 |
| 141 | 140 | oveq2i 5543 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-2 + (2
+ 2)) = (-2 + 4) |
| 142 | 131, 139,
141 | 3eqtr3ri 2110 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-2 + 4)
= 2 |
| 143 | 142 | oveq1i 5542 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-2 + 4)
· 𝐴) = (2 ·
𝐴) |
| 144 | 130 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -2 ∈
ℂ) |
| 145 | 144, 124,
71 | adddird 7144 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = ((-2 · 𝐴) + (4 · 𝐴))) |
| 146 | 99, 71 | mulneg1d 7515 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴)) |
| 147 | 146 | oveq1d 5547 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 · 𝐴) + (4 · 𝐴)) = (-(2 · 𝐴) + (4 · 𝐴))) |
| 148 | 145, 147 | eqtrd 2113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = (-(2 · 𝐴) + (4 · 𝐴))) |
| 149 | 143, 148 | syl5reqr 2128 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(2 · 𝐴) + (4 · 𝐴)) = (2 · 𝐴)) |
| 150 | 149 | oveq2d 5548 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) |
| 151 | 126, 128,
150 | 3eqtr3rd 2122 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) |
| 152 | 151 | oveq1d 5547 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
| 153 | 19 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℝ) |
| 154 | 153, 52 | remulcld 7149 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℝ) |
| 155 | 59, 154 | resubcld 7485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · 𝐴)) ∈
ℝ) |
| 156 | 57 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℝ) |
| 157 | 156, 52 | remulcld 7149 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℝ) |
| 158 | 53 | resqcld 9631 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 / (𝐹‘𝑘))↑2) ∈ ℝ) |
| 159 | | recn 7106 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ ℝ → 𝑓 ∈
ℂ) |
| 160 | | recn 7106 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ ℝ → 𝑔 ∈
ℂ) |
| 161 | | addcom 7245 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
| 162 | 159, 160,
161 | syl2an 283 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
| 163 | 162 | adantl 271 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
| 164 | | recn 7106 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ ℝ → ℎ ∈ ℂ) |
| 165 | | addass 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ ℎ ∈ ℂ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
| 166 | 159, 160,
164, 165 | syl3an 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
| 167 | 166 | adantl 271 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ)) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
| 168 | 155, 157,
158, 163, 167 | caov32d 5701 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
| 169 | 120, 152,
168 | 3eqtrd 2117 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
| 170 | 111, 115,
169 | 3eqtr4rd 2124 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴))) |
| 171 | 170 | oveq1d 5547 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) |
| 172 | 106, 171 | eqtrd 2113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) |
| 173 | 68, 112 | subcld 7419 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℂ) |
| 174 | 173 | sqcld 9603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℂ) |
| 175 | 89 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 #
0) |
| 176 | 174, 125,
124, 175 | divdirapd 7915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4))) |
| 177 | 71, 124, 175 | divcanap3d 7882 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴) |
| 178 | 177 | oveq2d 5548 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4)) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
| 179 | 172, 176,
178 | 3eqtrd 2117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
| 180 | 179 | breq2d 3797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
| 181 | 180 | adantr 270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
| 182 | 94, 181 | mpbird 165 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)) |
| 183 | 182 | ex 113 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) |
| 184 | 183 | expcom 114 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
| 185 | 184 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)) → (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
| 186 | 4, 8, 12, 16, 48, 185 | nnind 8055 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2))) |
| 187 | 186 | impcom 123 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |