ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6 GIF version

Theorem 3lcm2e6 10539
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6 (3 lcm 2) = 6

Proof of Theorem 3lcm2e6
StepHypRef Expression
1 2re 8109 . . . . . 6 2 ∈ ℝ
2 2lt3 8202 . . . . . 6 2 < 3
31, 2gtneii 7206 . . . . 5 3 ≠ 2
4 3prm 10510 . . . . . 6 3 ∈ ℙ
5 2prm 10509 . . . . . 6 2 ∈ ℙ
6 prmrp 10524 . . . . . 6 ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2))
74, 5, 6mp2an 416 . . . . 5 ((3 gcd 2) = 1 ↔ 3 ≠ 2)
83, 7mpbir 144 . . . 4 (3 gcd 2) = 1
98oveq2i 5543 . . 3 ((3 lcm 2) · (3 gcd 2)) = ((3 lcm 2) · 1)
10 3nn 8194 . . . 4 3 ∈ ℕ
11 2nn 8193 . . . 4 2 ∈ ℕ
12 lcmgcdnn 10464 . . . 4 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
1310, 11, 12mp2an 416 . . 3 ((3 lcm 2) · (3 gcd 2)) = (3 · 2)
1410nnzi 8372 . . . . . 6 3 ∈ ℤ
1511nnzi 8372 . . . . . 6 2 ∈ ℤ
16 lcmcl 10454 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
1714, 15, 16mp2an 416 . . . . 5 (3 lcm 2) ∈ ℕ0
1817nn0cni 8300 . . . 4 (3 lcm 2) ∈ ℂ
1918mulid1i 7121 . . 3 ((3 lcm 2) · 1) = (3 lcm 2)
209, 13, 193eqtr3ri 2110 . 2 (3 lcm 2) = (3 · 2)
21 3t2e6 8188 . 2 (3 · 2) = 6
2220, 21eqtri 2101 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wcel 1433  wne 2245  (class class class)co 5532  1c1 6982   · cmul 6986  cn 8039  2c2 8089  3c3 8090  6c6 8093  0cn0 8288  cz 8351   gcd cgcd 10338   lcm clcm 10442  cprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-lcm 10443  df-prm 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator