![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > acexmidlem1 | GIF version |
Description: Lemma for acexmid 5531. List the cases identified in acexmidlemcase 5527 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlem1 | ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . 3 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
2 | acexmidlem.b | . . 3 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
3 | acexmidlem.c | . . 3 ⊢ 𝐶 = {𝐴, 𝐵} | |
4 | 1, 2, 3 | acexmidlemcase 5527 | . 2 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}))) |
5 | 1, 2, 3 | acexmidlema 5523 | . . . 4 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
6 | 5 | orcd 684 | . . 3 ⊢ ({∅} ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) |
7 | 1, 2, 3 | acexmidlemb 5524 | . . . 4 ⊢ (∅ ∈ 𝐵 → 𝜑) |
8 | 7 | orcd 684 | . . 3 ⊢ (∅ ∈ 𝐵 → (𝜑 ∨ ¬ 𝜑)) |
9 | 1, 2, 3 | acexmidlemab 5526 | . . . 4 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ¬ 𝜑) |
10 | 9 | olcd 685 | . . 3 ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → (𝜑 ∨ ¬ 𝜑)) |
11 | 6, 8, 10 | 3jaoi 1234 | . 2 ⊢ (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → (𝜑 ∨ ¬ 𝜑)) |
12 | 4, 11 | syl 14 | 1 ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 ∨ w3o 918 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ∃!wreu 2350 {crab 2352 ∅c0 3251 {csn 3398 {cpr 3399 ℩crio 5487 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 df-iota 4887 df-riota 5488 |
This theorem is referenced by: acexmidlem2 5529 |
Copyright terms: Public domain | W3C validator |