ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb GIF version

Theorem acexmidlemb 5524
Description: Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemb (∅ ∈ 𝐵𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
21eleq2i 2145 . . 3 (∅ ∈ 𝐵 ↔ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)})
3 0ex 3905 . . . . 5 ∅ ∈ V
43prid1 3498 . . . 4 ∅ ∈ {∅, {∅}}
5 eqeq1 2087 . . . . . 6 (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅}))
65orbi1d 737 . . . . 5 (𝑥 = ∅ → ((𝑥 = {∅} ∨ 𝜑) ↔ (∅ = {∅} ∨ 𝜑)))
76elrab3 2750 . . . 4 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑)))
84, 7ax-mp 7 . . 3 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑))
92, 8bitri 182 . 2 (∅ ∈ 𝐵 ↔ (∅ = {∅} ∨ 𝜑))
10 noel 3255 . . . 4 ¬ ∅ ∈ ∅
113snid 3425 . . . . 5 ∅ ∈ {∅}
12 eleq2 2142 . . . . 5 (∅ = {∅} → (∅ ∈ ∅ ↔ ∅ ∈ {∅}))
1311, 12mpbiri 166 . . . 4 (∅ = {∅} → ∅ ∈ ∅)
1410, 13mto 620 . . 3 ¬ ∅ = {∅}
15 orel1 676 . . 3 (¬ ∅ = {∅} → ((∅ = {∅} ∨ 𝜑) → 𝜑))
1614, 15ax-mp 7 . 2 ((∅ = {∅} ∨ 𝜑) → 𝜑)
179, 16sylbi 119 1 (∅ ∈ 𝐵𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wo 661   = wceq 1284  wcel 1433  {crab 2352  c0 3251  {csn 3398  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-sn 3404  df-pr 3405
This theorem is referenced by:  acexmidlem1  5528
  Copyright terms: Public domain W3C validator