![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 462 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 459 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: mpteqb 5282 fiunsnnn 6365 addcomnqg 6571 addassnqg 6572 nqtri3or 6586 lt2addnq 6594 lt2mulnq 6595 enq0ref 6623 enq0tr 6624 nqnq0pi 6628 nqpnq0nq 6643 nqnq0a 6644 distrnq0 6649 addassnq0lemcl 6651 ltsrprg 6924 mulcomsrg 6934 mulasssrg 6935 distrsrg 6936 aptisr 6955 mulcnsr 7003 cnegex 7286 sub4 7353 muladd 7488 ltleadd 7550 divdivdivap 7801 divadddivap 7815 ltmul12a 7938 fzrev 9101 facndiv 9666 cncongr1 10485 |
Copyright terms: Public domain | W3C validator |