ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnqg GIF version

Theorem addassnqg 6572
Description: Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
Assertion
Ref Expression
addassnqg ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))

Proof of Theorem addassnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 6560 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 6560 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
4 addpipqqs 6560 . 2 (((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) ∧ (𝑣N𝑢N)) → ([⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)), ((𝑦 ·N 𝑤) ·N 𝑢)⟩] ~Q )
5 addpipqqs 6560 . 2 (((𝑥N𝑦N) ∧ (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q ) = [⟨((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))), (𝑦 ·N (𝑤 ·N 𝑢))⟩] ~Q )
6 mulclpi 6518 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
76ad2ant2rl 494 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 6518 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
98ad2ant2lr 493 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑧) ∈ N)
10 addclpi 6517 . . . 4 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
117, 9, 10syl2anc 403 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 6518 . . . 4 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 491 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 300 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 mulclpi 6518 . . . . 5 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
1615ad2ant2rl 494 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
17 mulclpi 6518 . . . . 5 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
1817ad2ant2lr 493 . . . 4 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
19 addclpi 6517 . . . 4 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
2016, 18, 19syl2anc 403 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
21 mulclpi 6518 . . . 4 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2221ad2ant2l 491 . . 3 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
2320, 22jca 300 . 2 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N))
24 simp1l 962 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
25 simp2r 965 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
26 simp3r 967 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
2725, 26, 21syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 mulclpi 6518 . . . . 5 ((𝑥N ∧ (𝑤 ·N 𝑢) ∈ N) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
2924, 27, 28syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N (𝑤 ·N 𝑢)) ∈ N)
30 simp1r 963 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
31 simp2l 964 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
3231, 26, 15syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
33 mulclpi 6518 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
3430, 32, 33syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N)
35 simp3l 966 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
3625, 35, 17syl2anc 403 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
37 mulclpi 6518 . . . . 5 ((𝑦N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
3830, 36, 37syl2anc 403 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N)
39 addasspig 6520 . . . 4 (((𝑥 ·N (𝑤 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑧 ·N 𝑢)) ∈ N ∧ (𝑦 ·N (𝑤 ·N 𝑣)) ∈ N) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
4029, 34, 38, 39syl3anc 1169 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
41 mulcompig 6521 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
4241adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
43 distrpig 6523 . . . . . . . 8 ((N𝑓N𝑔N) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
44433coml 1145 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = (( ·N 𝑓) +N ( ·N 𝑔)))
45 addclpi 6517 . . . . . . . . . 10 ((𝑓N𝑔N) → (𝑓 +N 𝑔) ∈ N)
46 mulcompig 6521 . . . . . . . . . 10 ((N ∧ (𝑓 +N 𝑔) ∈ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4745, 46sylan2 280 . . . . . . . . 9 ((N ∧ (𝑓N𝑔N)) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
4847ancoms 264 . . . . . . . 8 (((𝑓N𝑔N) ∧ N) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
49483impa 1133 . . . . . . 7 ((𝑓N𝑔NN) → ( ·N (𝑓 +N 𝑔)) = ((𝑓 +N 𝑔) ·N ))
50 mulcompig 6521 . . . . . . . . . 10 ((N𝑓N) → ( ·N 𝑓) = (𝑓 ·N ))
5150ancoms 264 . . . . . . . . 9 ((𝑓NN) → ( ·N 𝑓) = (𝑓 ·N ))
52513adant2 957 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑓) = (𝑓 ·N ))
53 mulcompig 6521 . . . . . . . . . 10 ((N𝑔N) → ( ·N 𝑔) = (𝑔 ·N ))
5453ancoms 264 . . . . . . . . 9 ((𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
55543adant1 956 . . . . . . . 8 ((𝑓N𝑔NN) → ( ·N 𝑔) = (𝑔 ·N ))
5652, 55oveq12d 5550 . . . . . . 7 ((𝑓N𝑔NN) → (( ·N 𝑓) +N ( ·N 𝑔)) = ((𝑓 ·N ) +N (𝑔 ·N )))
5744, 49, 563eqtr3d 2121 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
5857adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 +N 𝑔) ·N ) = ((𝑓 ·N ) +N (𝑔 ·N )))
59 mulasspig 6522 . . . . . 6 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
6059adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
61 mulclpi 6518 . . . . . 6 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
6261adantl 271 . . . . 5 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
6342, 58, 60, 62, 24, 30, 25, 31, 26caovdilemd 5712 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))))
64 mulasspig 6522 . . . . . . 7 ((𝑦N𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
65643adant1l 1161 . . . . . 6 (((𝑥N𝑦N) ∧ 𝑤N𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
66653adant2l 1163 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑣N) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
67663adant3r 1166 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑣) = (𝑦 ·N (𝑤 ·N 𝑣)))
6863, 67oveq12d 5550 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = (((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N (𝑧 ·N 𝑢))) +N (𝑦 ·N (𝑤 ·N 𝑣))))
69 distrpig 6523 . . . . 5 ((𝑦N ∧ (𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7030, 32, 36, 69syl3anc 1169 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣))) = ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣))))
7170oveq2d 5548 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N ((𝑦 ·N (𝑧 ·N 𝑢)) +N (𝑦 ·N (𝑤 ·N 𝑣)))))
7240, 68, 713eqtr4d 2123 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ·N 𝑢) +N ((𝑦 ·N 𝑤) ·N 𝑣)) = ((𝑥 ·N (𝑤 ·N 𝑢)) +N (𝑦 ·N ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)))))
73 mulasspig 6522 . . . . 5 ((𝑦N𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
74733adant1l 1161 . . . 4 (((𝑥N𝑦N) ∧ 𝑤N𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
75743adant2l 1163 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ 𝑢N) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
76753adant3l 1165 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑦 ·N 𝑤) ·N 𝑢) = (𝑦 ·N (𝑤 ·N 𝑢)))
771, 2, 3, 4, 5, 14, 23, 72, 76ecoviass 6239 1 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  (class class class)co 5532  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-plpq 6534  df-enq 6537  df-nqqs 6538  df-plqqs 6539
This theorem is referenced by:  ltaddnq  6597  addlocprlemeqgt  6722  addassprg  6769  ltexprlemloc  6797  ltexprlemrl  6800  ltexprlemru  6802  addcanprleml  6804  addcanprlemu  6805  cauappcvgprlemdisj  6841  cauappcvgprlemloc  6842  cauappcvgprlemladdfl  6845  cauappcvgprlemladdru  6846  cauappcvgprlemladdrl  6847  cauappcvgprlem1  6849  caucvgprlemloc  6865  caucvgprlemladdrl  6868  caucvgprprlemloccalc  6874
  Copyright terms: Public domain W3C validator