ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or GIF version

Theorem nqtri3or 6586
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))

Proof of Theorem nqtri3or
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . 2 Q = ((N × N) / ~Q )
2 breq1 3788 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q ))
3 eqeq1 2087 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ))
4 breq2 3789 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴))
52, 3, 43orbi123d 1242 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴)))
6 breq2 3789 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q 𝐵))
7 eqeq2 2090 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 = [⟨𝑢, 𝑣⟩] ~Q𝐴 = 𝐵))
8 breq1 3788 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ([⟨𝑢, 𝑣⟩] ~Q <Q 𝐴𝐵 <Q 𝐴))
96, 7, 83orbi123d 1242 . 2 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴) ↔ (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴)))
10 mulclpi 6518 . . . . 5 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1110ad2ant2rl 494 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) ∈ N)
12 mulclpi 6518 . . . . 5 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1312ad2ant2lr 493 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
14 pitri3or 6512 . . . 4 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
1511, 13, 14syl2anc 403 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
16 ordpipqqs 6564 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢)))
17 enqeceq 6549 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢)))
18 ordpipqqs 6564 . . . . . 6 (((𝑢N𝑣N) ∧ (𝑧N𝑤N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
1918ancoms 264 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
20 mulcompig 6521 . . . . . . 7 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
2120ad2ant2lr 493 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
22 mulcompig 6521 . . . . . . 7 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2322ad2ant2rl 494 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2421, 23breq12d 3798 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣) ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
2519, 24bitr4d 189 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
2616, 17, 253orbi123d 1242 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣))))
2715, 26mpbird 165 . 2 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
281, 5, 9, 272ecoptocl 6217 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3o 918   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785  (class class class)co 5532  [cec 6127  Ncnpi 6462   ·N cmi 6464   <N clti 6465   ~Q ceq 6469  Qcnq 6470   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543
This theorem is referenced by:  ltsonq  6588  nqtric  6589  addlocprlem  6725  nqprloc  6735  distrlem4prl  6774  distrlem4pru  6775  ltexprlemrl  6800  aptiprleml  6829  aptiprlemu  6830
  Copyright terms: Public domain W3C validator