ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq GIF version

Theorem nqpnq0nq 6643
Description: A positive fraction plus a non-negative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)

Proof of Theorem nqpnq0nq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 6568 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nq0nn 6632 . . . 4 (𝐵Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ))
31, 2anim12i 331 . . 3 ((𝐴Q𝐵Q0) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
4 ee4anv 1850 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
53, 4sylibr 132 . 2 ((𝐴Q𝐵Q0) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
6 oveq12 5541 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
76ad2ant2l 491 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
8 nqnq0pi 6628 . . . . . . . . . 10 ((𝑥N𝑦N) → [⟨𝑥, 𝑦⟩] ~Q0 = [⟨𝑥, 𝑦⟩] ~Q )
98oveq1d 5547 . . . . . . . . 9 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
109adantr 270 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
11 pinn 6499 . . . . . . . . 9 (𝑥N𝑥 ∈ ω)
12 addnnnq0 6639 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1311, 12sylanl1 394 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1410, 13eqtr3d 2115 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1514ad2ant2r 492 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
167, 15eqtrd 2113 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
17 pinn 6499 . . . . . . . . . . . . . 14 (𝑦N𝑦 ∈ ω)
18 nnmcl 6083 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
1917, 18sylan 277 . . . . . . . . . . . . 13 ((𝑦N𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
2019ad2ant2lr 493 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·𝑜 𝑧) ∈ ω)
21 mulpiord 6507 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑥 ·𝑜 𝑤))
22 mulclpi 6518 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
2321, 22eqeltrrd 2156 . . . . . . . . . . . . 13 ((𝑥N𝑤N) → (𝑥 ·𝑜 𝑤) ∈ N)
2423ad2ant2rl 494 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·𝑜 𝑤) ∈ N)
25 pinn 6499 . . . . . . . . . . . . 13 ((𝑥 ·𝑜 𝑤) ∈ N → (𝑥 ·𝑜 𝑤) ∈ ω)
26 nnacom 6086 . . . . . . . . . . . . 13 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ ω) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
2725, 26sylan2 280 . . . . . . . . . . . 12 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ N) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
2820, 24, 27syl2anc 403 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
29 nnppipi 6533 . . . . . . . . . . . 12 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ N) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) ∈ N)
3020, 24, 29syl2anc 403 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) ∈ N)
3128, 30eqeltrrd 2156 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N)
32 mulpiord 6507 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·𝑜 𝑤))
33 mulclpi 6518 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3432, 33eqeltrrd 2156 . . . . . . . . . . 11 ((𝑦N𝑤N) → (𝑦 ·𝑜 𝑤) ∈ N)
3534ad2ant2l 491 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·𝑜 𝑤) ∈ N)
36 opelxpi 4394 . . . . . . . . . 10 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → ⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N))
3731, 35, 36syl2anc 403 . . . . . . . . 9 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N))
38 enqex 6550 . . . . . . . . . 10 ~Q ∈ V
3938ecelqsi 6183 . . . . . . . . 9 (⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
4037, 39syl 14 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 6538 . . . . . . . 8 Q = ((N × N) / ~Q )
4240, 41syl6eleqr 2172 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ)
43 nqnq0pi 6628 . . . . . . . . 9 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q )
4443eleq1d 2147 . . . . . . . 8 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ))
4531, 35, 44syl2anc 403 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ))
4642, 45mpbird 165 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q)
4746ad2ant2r 492 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q)
4816, 47eqeltrd 2155 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
4948exlimivv 1817 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
5049exlimivv 1817 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
515, 50syl 14 1 ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  cop 3401  ωcom 4331   × cxp 4361  (class class class)co 5532   +𝑜 coa 6021   ·𝑜 comu 6022  [cec 6127   / cqs 6128  Ncnpi 6462   ·N cmi 6464   ~Q ceq 6469  Qcnq 6470   ~Q0 ceq0 6476  Q0cnq0 6477   +Q0 cplq0 6479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-enq 6537  df-nqqs 6538  df-enq0 6614  df-nq0 6615  df-plq0 6617
This theorem is referenced by:  prarloclemcalc  6692
  Copyright terms: Public domain W3C validator