![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassnq0lemcl | GIF version |
Description: A natural number closure law. Lemma for addassnq0 6652. (Contributed by Jim Kingdon, 3-Dec-2019.) |
Ref | Expression |
---|---|
addassnq0lemcl | ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·𝑜 𝐿) +𝑜 (𝐽 ·𝑜 𝐾)) ∈ ω ∧ (𝐽 ·𝑜 𝐿) ∈ N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 6499 | . . . . 5 ⊢ (𝐿 ∈ N → 𝐿 ∈ ω) | |
2 | nnmcl 6083 | . . . . 5 ⊢ ((𝐼 ∈ ω ∧ 𝐿 ∈ ω) → (𝐼 ·𝑜 𝐿) ∈ ω) | |
3 | 1, 2 | sylan2 280 | . . . 4 ⊢ ((𝐼 ∈ ω ∧ 𝐿 ∈ N) → (𝐼 ·𝑜 𝐿) ∈ ω) |
4 | 3 | ad2ant2rl 494 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐼 ·𝑜 𝐿) ∈ ω) |
5 | pinn 6499 | . . . . 5 ⊢ (𝐽 ∈ N → 𝐽 ∈ ω) | |
6 | nnmcl 6083 | . . . . 5 ⊢ ((𝐽 ∈ ω ∧ 𝐾 ∈ ω) → (𝐽 ·𝑜 𝐾) ∈ ω) | |
7 | 5, 6 | sylan 277 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ ω) → (𝐽 ·𝑜 𝐾) ∈ ω) |
8 | 7 | ad2ant2lr 493 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐽 ·𝑜 𝐾) ∈ ω) |
9 | nnacl 6082 | . . 3 ⊢ (((𝐼 ·𝑜 𝐿) ∈ ω ∧ (𝐽 ·𝑜 𝐾) ∈ ω) → ((𝐼 ·𝑜 𝐿) +𝑜 (𝐽 ·𝑜 𝐾)) ∈ ω) | |
10 | 4, 8, 9 | syl2anc 403 | . 2 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → ((𝐼 ·𝑜 𝐿) +𝑜 (𝐽 ·𝑜 𝐾)) ∈ ω) |
11 | mulpiord 6507 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·N 𝐿) = (𝐽 ·𝑜 𝐿)) | |
12 | mulclpi 6518 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·N 𝐿) ∈ N) | |
13 | 11, 12 | eqeltrrd 2156 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·𝑜 𝐿) ∈ N) |
14 | 13 | ad2ant2l 491 | . 2 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐽 ·𝑜 𝐿) ∈ N) |
15 | 10, 14 | jca 300 | 1 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·𝑜 𝐿) +𝑜 (𝐽 ·𝑜 𝐾)) ∈ ω ∧ (𝐽 ·𝑜 𝐿) ∈ N)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 ωcom 4331 (class class class)co 5532 +𝑜 coa 6021 ·𝑜 comu 6022 Ncnpi 6462 ·N cmi 6464 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-ni 6494 df-mi 6496 |
This theorem is referenced by: addassnq0 6652 |
Copyright terms: Public domain | W3C validator |