![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nummac | GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
Ref | Expression |
---|---|
nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
2 | 1 | nn0cni 8300 | . . . 4 ⊢ 𝑇 ∈ ℂ |
3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 8300 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
6 | 5 | nn0cni 8300 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
7 | 4, 6 | mulcli 7124 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
9 | 8 | nn0cni 8300 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
11 | 10 | nn0cni 8300 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
12 | 7, 9, 11 | addassi 7127 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
14 | 12, 13 | eqtri 2101 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
15 | 7, 9 | addcli 7123 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
16 | 15, 11 | addcli 7123 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
17 | 14, 16 | eqeltrri 2152 | . . . 4 ⊢ 𝐸 ∈ ℂ |
18 | 2, 17, 11 | subdii 7511 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
19 | 18 | oveq1i 5542 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
24 | 17, 11, 15 | subadd2i 7396 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
25 | 14, 24 | mpbir 144 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
26 | 25 | eqcomi 2085 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 8520 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
29 | 2, 17 | mulcli 7124 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
30 | 2, 11 | mulcli 7124 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
31 | npcan 7317 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
32 | 29, 30, 31 | mp2an 416 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
33 | 32 | oveq1i 5542 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
34 | 29, 30 | subcli 7384 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
36 | 35 | nn0cni 8300 | . . . 4 ⊢ 𝐹 ∈ ℂ |
37 | 34, 30, 36 | addassi 7127 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
38 | 33, 37 | eqtr3i 2103 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
39 | 19, 28, 38 | 3eqtr4i 2111 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 + caddc 6984 · cmul 6986 − cmin 7279 ℕ0cn0 8288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sub 7281 df-inn 8040 df-n0 8289 |
This theorem is referenced by: numma2c 8522 numaddc 8524 nummul1c 8525 decmac 8528 |
Copyright terms: Public domain | W3C validator |