| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvdsdec | GIF version | ||
| Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g. 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 8480 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 9p1e10 8479 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2085 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
| 4 | 3 | oveq1i 5542 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
| 5 | 9cn 8127 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 6 | ax-1cn 7069 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 8300 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 5, 6, 8 | adddiri 7130 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
| 10 | 8 | mulid2i 7122 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
| 11 | 10 | oveq2i 5543 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
| 12 | 4, 9, 11 | 3eqtri 2105 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
| 13 | 12 | oveq1i 5542 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
| 14 | 5, 8 | mulcli 7124 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
| 15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0cni 8300 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 8, 16 | addassi 7127 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 18 | 1, 13, 17 | 3eqtri 2105 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 19 | 18 | breq2i 3793 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 20 | 3z 8380 | . . 3 ⊢ 3 ∈ ℤ | |
| 21 | 7 | nn0zi 8373 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 22 | 15 | nn0zi 8373 | . . . 4 ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl 8391 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
| 24 | 21, 22, 23 | mp2an 416 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
| 25 | 9nn 8200 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi 8372 | . . . . 5 ⊢ 9 ∈ ℤ |
| 27 | zmulcl 8404 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
| 28 | 26, 21, 27 | mp2an 416 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
| 29 | zmulcl 8404 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
| 30 | 20, 21, 29 | mp2an 416 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
| 31 | dvdsmul1 10217 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
| 32 | 20, 30, 31 | mp2an 416 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
| 33 | 3t3e9 8189 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2085 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 5542 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
| 36 | 3cn 8114 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 37 | 36, 36, 8 | mulassi 7128 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
| 38 | 35, 37 | eqtri 2101 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
| 39 | 32, 38 | breqtrri 3810 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
| 40 | 28, 39 | pm3.2i 266 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
| 41 | dvdsadd2b 10242 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
| 42 | 20, 24, 40, 41 | mp3an 1268 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 43 | 19, 42 | bitr4i 185 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 0cc0 6981 1c1 6982 + caddc 6984 · cmul 6986 3c3 8090 9c9 8096 ℕ0cn0 8288 ℤcz 8351 ;cdc 8477 ∥ cdvds 10195 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-7 8103 df-8 8104 df-9 8105 df-n0 8289 df-z 8352 df-dec 8478 df-dvds 10196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |