ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlelt GIF version

Theorem addlelt 8839
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
addlelt ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))

Proof of Theorem addlelt
StepHypRef Expression
1 rpgt0 8745 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
213ad2ant3 961 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 0 < 𝐴)
3 rpre 8740 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant3 961 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
5 simp1 938 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
64, 5ltaddposd 7629 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (0 < 𝐴𝑀 < (𝑀 + 𝐴)))
72, 6mpbid 145 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 < (𝑀 + 𝐴))
8 simpl 107 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
93adantl 271 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
108, 9readdcld 7148 . . . 4 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
11103adant2 957 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
12 simp2 939 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑁 ∈ ℝ)
13 ltletr 7200 . . 3 ((𝑀 ∈ ℝ ∧ (𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
145, 11, 12, 13syl3anc 1169 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
157, 14mpand 419 1 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981   + caddc 6984   < clt 7153  cle 7154  +crp 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-pre-ltwlin 7089  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-iota 4887  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-rp 8735
This theorem is referenced by:  zltaddlt1le  9028
  Copyright terms: Public domain W3C validator