ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex GIF version

Theorem pwex 3953
Description: Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
zfpowcl.1 𝐴 ∈ V
Assertion
Ref Expression
pwex 𝒫 𝐴 ∈ V

Proof of Theorem pwex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfpowcl.1 . 2 𝐴 ∈ V
2 pweq 3385 . . 3 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
32eleq1d 2147 . 2 (𝑧 = 𝐴 → (𝒫 𝑧 ∈ V ↔ 𝒫 𝐴 ∈ V))
4 df-pw 3384 . . 3 𝒫 𝑧 = {𝑦𝑦𝑧}
5 axpow2 3950 . . . . . 6 𝑥𝑦(𝑦𝑧𝑦𝑥)
65bm1.3ii 3899 . . . . 5 𝑥𝑦(𝑦𝑥𝑦𝑧)
7 abeq2 2187 . . . . . 6 (𝑥 = {𝑦𝑦𝑧} ↔ ∀𝑦(𝑦𝑥𝑦𝑧))
87exbii 1536 . . . . 5 (∃𝑥 𝑥 = {𝑦𝑦𝑧} ↔ ∃𝑥𝑦(𝑦𝑥𝑦𝑧))
96, 8mpbir 144 . . . 4 𝑥 𝑥 = {𝑦𝑦𝑧}
109issetri 2608 . . 3 {𝑦𝑦𝑧} ∈ V
114, 10eqeltri 2151 . 2 𝒫 𝑧 ∈ V
121, 3, 11vtocl 2653 1 𝒫 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  {cab 2067  Vcvv 2601  wss 2973  𝒫 cpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by:  pwexg  3954  p0ex  3959  pp0ex  3960  ord3ex  3961  abexssex  5772  npex  6663  axcnex  7027  pnfxr  8846  mnfxr  8848  ixxex  8922
  Copyright terms: Public domain W3C validator