![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwex | GIF version |
Description: Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
zfpowcl.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpowcl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pweq 3385 | . . 3 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | eleq1d 2147 | . 2 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
4 | df-pw 3384 | . . 3 ⊢ 𝒫 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑧} | |
5 | axpow2 3950 | . . . . . 6 ⊢ ∃𝑥∀𝑦(𝑦 ⊆ 𝑧 → 𝑦 ∈ 𝑥) | |
6 | 5 | bm1.3ii 3899 | . . . . 5 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧) |
7 | abeq2 2187 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧)) | |
8 | 7 | exbii 1536 | . . . . 5 ⊢ (∃𝑥 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧)) |
9 | 6, 8 | mpbir 144 | . . . 4 ⊢ ∃𝑥 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} |
10 | 9 | issetri 2608 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑧} ∈ V |
11 | 4, 10 | eqeltri 2151 | . 2 ⊢ 𝒫 𝑧 ∈ V |
12 | 1, 3, 11 | vtocl 2653 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {cab 2067 Vcvv 2601 ⊆ wss 2973 𝒫 cpw 3382 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 |
This theorem is referenced by: pwexg 3954 p0ex 3959 pp0ex 3960 ord3ex 3961 abexssex 5772 npex 6663 axcnex 7027 pnfxr 8846 mnfxr 8848 ixxex 8922 |
Copyright terms: Public domain | W3C validator |