| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snexg | GIF version | ||
| Description: snexg 3956 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3412 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | bj-prexg 10702 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝐴, 𝐴} ∈ V) | |
| 3 | 2 | anidms 389 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ∈ V) |
| 4 | 1, 3 | syl5eqel 2165 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 1433 Vcvv 2601 {csn 3398 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-pr 3964 ax-bdor 10607 ax-bdeq 10611 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: bj-snex 10704 bj-sels 10705 bj-sucexg 10713 |
| Copyright terms: Public domain | W3C validator |