| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucex | GIF version | ||
| Description: sucex 4243 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bj-sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | bj-sucexg 10713 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 7 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 1433 Vcvv 2601 suc csuc 4120 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-pr 3964 ax-un 4188 ax-bd0 10604 ax-bdor 10607 ax-bdex 10610 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-suc 4126 df-bdc 10632 |
| This theorem is referenced by: bj-indint 10726 bj-bdfindis 10742 bj-inf2vnlem1 10765 |
| Copyright terms: Public domain | W3C validator |