Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindis GIF version

Theorem bj-bdfindis 10742
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4341 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4341, finds2 4342, finds1 4343. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd BOUNDED 𝜑
bj-bdfindis.nf0 𝑥𝜓
bj-bdfindis.nf1 𝑥𝜒
bj-bdfindis.nfsuc 𝑥𝜃
bj-bdfindis.0 (𝑥 = ∅ → (𝜓𝜑))
bj-bdfindis.1 (𝑥 = 𝑦 → (𝜑𝜒))
bj-bdfindis.suc (𝑥 = suc 𝑦 → (𝜃𝜑))
Assertion
Ref Expression
bj-bdfindis ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)

Proof of Theorem bj-bdfindis
StepHypRef Expression
1 bj-bdfindis.nf0 . . . 4 𝑥𝜓
2 0ex 3905 . . . 4 ∅ ∈ V
3 bj-bdfindis.0 . . . 4 (𝑥 = ∅ → (𝜓𝜑))
41, 2, 3elabf2 10592 . . 3 (𝜓 → ∅ ∈ {𝑥𝜑})
5 bj-bdfindis.nf1 . . . . . 6 𝑥𝜒
6 bj-bdfindis.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜒))
75, 6elabf1 10591 . . . . 5 (𝑦 ∈ {𝑥𝜑} → 𝜒)
8 bj-bdfindis.nfsuc . . . . . 6 𝑥𝜃
9 vex 2604 . . . . . . 7 𝑦 ∈ V
109bj-sucex 10714 . . . . . 6 suc 𝑦 ∈ V
11 bj-bdfindis.suc . . . . . 6 (𝑥 = suc 𝑦 → (𝜃𝜑))
128, 10, 11elabf2 10592 . . . . 5 (𝜃 → suc 𝑦 ∈ {𝑥𝜑})
137, 12imim12i 58 . . . 4 ((𝜒𝜃) → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413ralimi 2426 . . 3 (∀𝑦 ∈ ω (𝜒𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
15 bj-bdfindis.bd . . . . 5 BOUNDED 𝜑
1615bdcab 10640 . . . 4 BOUNDED {𝑥𝜑}
1716bdpeano5 10738 . . 3 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
184, 14, 17syl2an 283 . 2 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ω ⊆ {𝑥𝜑})
19 ssabral 3065 . 2 (ω ⊆ {𝑥𝜑} ↔ ∀𝑥 ∈ ω 𝜑)
2018, 19sylib 120 1 ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wnf 1389  wcel 1433  {cab 2067  wral 2348  wss 2973  c0 3251  suc csuc 4120  ωcom 4331  BOUNDED wbd 10603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-bdfindisg  10743  bj-bdfindes  10744  bj-nn0suc0  10745
  Copyright terms: Public domain W3C validator