![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brabg | GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brabg.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | opelopabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sylan9bb 449 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) |
4 | brabg.5 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 3, 4 | brabga 4019 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 {copab 3838 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 |
This theorem is referenced by: brab 4027 opbrop 4437 ideqg 4505 opelcnvg 4533 bren 6251 brdomg 6252 enq0breq 6626 ltresr 7007 ltxrlt 7178 apreap 7687 apreim 7703 shftfibg 9708 shftfib 9711 2shfti 9719 |
Copyright terms: Public domain | W3C validator |