ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg GIF version

Theorem sbcbrg 3834
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))

Proof of Theorem sbcbrg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2818 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶[𝐴 / 𝑥]𝐵𝑅𝐶))
2 csbeq1 2911 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 2911 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝑅 = 𝐴 / 𝑥𝑅)
4 csbeq1 2911 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4breq123d 3799 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
6 nfcsb1v 2938 . . . 4 𝑥𝑦 / 𝑥𝐵
7 nfcsb1v 2938 . . . 4 𝑥𝑦 / 𝑥𝑅
8 nfcsb1v 2938 . . . 4 𝑥𝑦 / 𝑥𝐶
96, 7, 8nfbr 3829 . . 3 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶
10 csbeq1a 2916 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 2916 . . . 4 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
12 csbeq1a 2916 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1310, 11, 12breq123d 3799 . . 3 (𝑥 = 𝑦 → (𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶))
149, 13sbie 1714 . 2 ([𝑦 / 𝑥]𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶)
151, 5, 14vtoclbg 2659 1 (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  [wsb 1685  [wsbc 2815  csb 2908   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786
This theorem is referenced by:  sbcbr12g  3835  csbcnvg  4537  sbcfung  4945  csbfv12g  5230
  Copyright terms: Public domain W3C validator