ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brprcneu GIF version

Theorem brprcneu 5191
Description: If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem brprcneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dtruex 4302 . . . . . . . . 9 𝑦 ¬ 𝑦 = 𝑥
2 equcom 1633 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
32notbii 626 . . . . . . . . . 10 𝑥 = 𝑦 ↔ ¬ 𝑦 = 𝑥)
43exbii 1536 . . . . . . . . 9 (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ∃𝑦 ¬ 𝑦 = 𝑥)
51, 4mpbir 144 . . . . . . . 8 𝑦 ¬ 𝑥 = 𝑦
65jctr 308 . . . . . . 7 (∅ ∈ 𝐹 → (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
7 19.42v 1827 . . . . . . 7 (∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦))
86, 7sylibr 132 . . . . . 6 (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))
9 opprc1 3592 . . . . . . . 8 𝐴 ∈ V → ⟨𝐴, 𝑥⟩ = ∅)
109eleq1d 2147 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
11 opprc1 3592 . . . . . . . . . . . 12 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
1211eleq1d 2147 . . . . . . . . . . 11 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∅ ∈ 𝐹))
1310, 12anbi12d 456 . . . . . . . . . 10 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹)))
14 anidm 388 . . . . . . . . . 10 ((∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹) ↔ ∅ ∈ 𝐹)
1513, 14syl6bb 194 . . . . . . . . 9 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ ∅ ∈ 𝐹))
1615anbi1d 452 . . . . . . . 8 𝐴 ∈ V → (((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1716exbidv 1746 . . . . . . 7 𝐴 ∈ V → (∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))
1810, 17imbi12d 232 . . . . . 6 𝐴 ∈ V → ((⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) ↔ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))))
198, 18mpbiri 166 . . . . 5 𝐴 ∈ V → (⟨𝐴, 𝑥⟩ ∈ 𝐹 → ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)))
20 df-br 3786 . . . . 5 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21 df-br 3786 . . . . . . . 8 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
2220, 21anbi12i 447 . . . . . . 7 ((𝐴𝐹𝑥𝐴𝐹𝑦) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2322anbi1i 445 . . . . . 6 (((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2423exbii 1536 . . . . 5 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦((⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))
2519, 20, 243imtr4g 203 . . . 4 𝐴 ∈ V → (𝐴𝐹𝑥 → ∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
2625eximdv 1801 . . 3 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)))
27 exanaliim 1578 . . . . . 6 (∃𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
2827eximi 1531 . . . . 5 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
29 exnalim 1577 . . . . 5 (∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3028, 29syl 14 . . . 4 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
31 breq2 3789 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
3231mo4 2002 . . . . 5 (∃*𝑥 𝐴𝐹𝑥 ↔ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3332notbii 626 . . . 4 (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ¬ ∀𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) → 𝑥 = 𝑦))
3430, 33sylibr 132 . . 3 (∃𝑥𝑦((𝐴𝐹𝑥𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∃*𝑥 𝐴𝐹𝑥)
3526, 34syl6 33 . 2 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
36 eu5 1988 . . . 4 (∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3736notbii 626 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
38 imnan 656 . . 3 ((∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥) ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥))
3937, 38bitr4i 185 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥))
4035, 39sylibr 132 1 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wal 1282  wex 1421  wcel 1433  ∃!weu 1941  ∃*wmo 1942  Vcvv 2601  c0 3251  cop 3401   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786
This theorem is referenced by:  fvprc  5192
  Copyright terms: Public domain W3C validator