ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsom GIF version

Theorem cnvsom 4881
Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
cnvsom (∃𝑥 𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem cnvsom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpom 4880 . . 3 (∃𝑥 𝑥𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐴))
2 vex 2604 . . . . . . . . 9 𝑦 ∈ V
3 vex 2604 . . . . . . . . 9 𝑥 ∈ V
42, 3brcnv 4536 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
5 vex 2604 . . . . . . . . . . 11 𝑧 ∈ V
62, 5brcnv 4536 . . . . . . . . . 10 (𝑦𝑅𝑧𝑧𝑅𝑦)
75, 3brcnv 4536 . . . . . . . . . 10 (𝑧𝑅𝑥𝑥𝑅𝑧)
86, 7orbi12i 713 . . . . . . . . 9 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦𝑥𝑅𝑧))
9 orcom 679 . . . . . . . . 9 ((𝑧𝑅𝑦𝑥𝑅𝑧) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
108, 9bitri 182 . . . . . . . 8 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
114, 10imbi12i 237 . . . . . . 7 ((𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
1211ralbii 2372 . . . . . 6 (∀𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
13122ralbii 2374 . . . . 5 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
14 ralcom 2517 . . . . 5 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))
1513, 14bitr3i 184 . . . 4 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))
1615a1i 9 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥))))
171, 16anbi12d 456 . 2 (∃𝑥 𝑥𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))))
18 df-iso 4052 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
19 df-iso 4052 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥))))
2017, 18, 193bitr4g 221 1 (∃𝑥 𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  wex 1421  wcel 1433  wral 2348   class class class wbr 3785   Po wpo 4049   Or wor 4050  ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-po 4051  df-iso 4052  df-cnv 4371
This theorem is referenced by:  gtso  7190
  Copyright terms: Public domain W3C validator