ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a GIF version

Theorem csbopeq1a 5834
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair 𝑥, 𝑦 in 𝐵 (analog of csbeq1a 2916). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2604 . . . . 5 𝑥 ∈ V
2 vex 2604 . . . . 5 𝑦 ∈ V
31, 2op2ndd 5796 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2086 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 csbeq1a 2916 . . 3 (𝑦 = (2nd𝐴) → 𝐵 = (2nd𝐴) / 𝑦𝐵)
64, 5syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = (2nd𝐴) / 𝑦𝐵)
71, 2op1std 5795 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2086 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 csbeq1a 2916 . . 3 (𝑥 = (1st𝐴) → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
108, 9syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
116, 10eqtr2d 2114 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  csb 2908  cop 3401  cfv 4922  1st c1st 5785  2nd c2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by:  dfmpt2  5864  f1od2  5876
  Copyright terms: Public domain W3C validator