ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rextpg GIF version

Theorem rextpg 3446
Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
raltpg.3 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
rextpg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem rextpg
StepHypRef Expression
1 ralprg.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 ralprg.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2rexprg 3444 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
43orbi1d 737 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑)))
5 raltpg.3 . . . . . 6 (𝑥 = 𝐶 → (𝜑𝜃))
65rexsng 3434 . . . . 5 (𝐶𝑋 → (∃𝑥 ∈ {𝐶}𝜑𝜃))
76orbi2d 736 . . . 4 (𝐶𝑋 → (((𝜓𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
84, 7sylan9bb 449 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
983impa 1133 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
10 df-tp 3406 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110rexeqi 2554 . . 3 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑)
12 rexun 3152 . . 3 (∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑))
1311, 12bitri 182 . 2 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑))
14 df-3or 920 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∨ 𝜃))
159, 13, 143bitr4g 221 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3o 918  w3a 919   = wceq 1284  wcel 1433  wrex 2349  cun 2971  {csn 3398  {cpr 3399  {ctp 3400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-tp 3406
This theorem is referenced by:  rextp  3450
  Copyright terms: Public domain W3C validator