ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diftpsn3 GIF version

Theorem diftpsn3 3527
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
diftpsn3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})

Proof of Theorem diftpsn3
StepHypRef Expression
1 df-tp 3406 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21a1i 9 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
32difeq1d 3089 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}))
4 difundir 3217 . . 3 (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶}))
54a1i 9 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})))
6 df-pr 3405 . . . . . . . . 9 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
76a1i 9 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
87ineq1d 3166 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶}))
9 incom 3158 . . . . . . . . 9 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ({𝐶} ∩ ({𝐴} ∪ {𝐵}))
10 indi 3211 . . . . . . . . 9 ({𝐶} ∩ ({𝐴} ∪ {𝐵})) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
119, 10eqtri 2101 . . . . . . . 8 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
1211a1i 9 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})))
13 necom 2329 . . . . . . . . . . 11 (𝐴𝐶𝐶𝐴)
14 disjsn2 3455 . . . . . . . . . . 11 (𝐶𝐴 → ({𝐶} ∩ {𝐴}) = ∅)
1513, 14sylbi 119 . . . . . . . . . 10 (𝐴𝐶 → ({𝐶} ∩ {𝐴}) = ∅)
1615adantr 270 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐴}) = ∅)
17 necom 2329 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
18 disjsn2 3455 . . . . . . . . . . 11 (𝐶𝐵 → ({𝐶} ∩ {𝐵}) = ∅)
1917, 18sylbi 119 . . . . . . . . . 10 (𝐵𝐶 → ({𝐶} ∩ {𝐵}) = ∅)
2019adantl 271 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐵}) = ∅)
2116, 20uneq12d 3127 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = (∅ ∪ ∅))
22 unidm 3115 . . . . . . . 8 (∅ ∪ ∅) = ∅
2321, 22syl6eq 2129 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = ∅)
248, 12, 233eqtrd 2117 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
25 disj3 3296 . . . . . 6 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2624, 25sylib 120 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2726eqcomd 2086 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵})
28 difid 3312 . . . . 5 ({𝐶} ∖ {𝐶}) = ∅
2928a1i 9 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∖ {𝐶}) = ∅)
3027, 29uneq12d 3127 . . 3 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅))
31 un0 3278 . . 3 ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵}
3230, 31syl6eq 2129 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = {𝐴, 𝐵})
333, 5, 323eqtrd 2117 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wne 2245  cdif 2970  cun 2971  cin 2972  c0 3251  {csn 3398  {cpr 3399  {ctp 3400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-tp 3406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator