ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmexg GIF version

Theorem dmexg 4614
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmexg (𝐴𝑉 → dom 𝐴 ∈ V)

Proof of Theorem dmexg
StepHypRef Expression
1 uniexg 4193 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4193 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun1 3135 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4613 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3008 . . 3 dom 𝐴 𝐴
6 ssexg 3917 . . 3 ((dom 𝐴 𝐴 𝐴 ∈ V) → dom 𝐴 ∈ V)
75, 6mpan 414 . 2 ( 𝐴 ∈ V → dom 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → dom 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  Vcvv 2601  cun 2971  wss 2973   cuni 3601  dom cdm 4363  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  dmex  4616  iprc  4618  exse2  4719  xpexr2m  4782  elxp4  4828  cnvexg  4875  coexg  4882  dmfex  5099  cofunexg  5758  offval3  5781  1stvalg  5789  tposexg  5896  erexb  6154  f1vrnfibi  6394  shftfvalg  9706
  Copyright terms: Public domain W3C validator