ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m GIF version

Theorem xpexr2m 4782
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem xpexr2m
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4765 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
2 dmxpm 4573 . . . . . 6 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
32adantl 271 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 4614 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 270 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2156 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → 𝐴 ∈ V)
7 rnxpm 4772 . . . . . 6 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
87adantl 271 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 4615 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 270 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2156 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → 𝐵 ∈ V)
126, 11anim12dan 564 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 530 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 282 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601   × cxp 4361  dom cdm 4363  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator