ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp GIF version

Theorem dminxp 4785
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4545 . . . 4 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐴 × 𝐵))
2 cnvin 4751 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶(𝐴 × 𝐵))
3 cnvxp 4762 . . . . . . 7 (𝐴 × 𝐵) = (𝐵 × 𝐴)
43ineq2i 3164 . . . . . 6 (𝐶(𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
52, 4eqtri 2101 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
65rneqi 4580 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
71, 6eqtri 2101 . . 3 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
87eqeq1i 2088 . 2 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴)
9 rninxp 4784 . 2 (ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥)
10 vex 2604 . . . . 5 𝑦 ∈ V
11 vex 2604 . . . . 5 𝑥 ∈ V
1210, 11brcnv 4536 . . . 4 (𝑦𝐶𝑥𝑥𝐶𝑦)
1312rexbii 2373 . . 3 (∃𝑦𝐵 𝑦𝐶𝑥 ↔ ∃𝑦𝐵 𝑥𝐶𝑦)
1413ralbii 2372 . 2 (∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
158, 9, 143bitri 204 1 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wral 2348  wrex 2349  cin 2972   class class class wbr 3785   × cxp 4361  ccnv 4362  dom cdm 4363  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator