ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm GIF version

Theorem dmmrnm 4572
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴

Proof of Theorem dmmrnm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-dm 4373 . . . . 5 dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}
21eleq2i 2145 . . . 4 (𝑥 ∈ dom 𝐴𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
32exbii 1536 . . 3 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
4 abid 2069 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧)
54exbii 1536 . . 3 (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
63, 5bitri 182 . 2 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
7 dfrn2 4541 . . . . 5 ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}
87eleq2i 2145 . . . 4 (𝑧 ∈ ran 𝐴𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
98exbii 1536 . . 3 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
10 abid 2069 . . . . 5 (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧)
1110exbii 1536 . . . 4 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧𝑥 𝑥𝐴𝑧)
12 excom 1594 . . . 4 (∃𝑧𝑥 𝑥𝐴𝑧 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
1311, 12bitri 182 . . 3 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
149, 13bitri 182 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
15 eleq1 2141 . . 3 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
1615cbvexv 1836 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
176, 14, 163bitr2i 206 1 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103  wex 1421  wcel 1433  {cab 2067   class class class wbr 3785  dom cdm 4363  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  rnsnm  4807
  Copyright terms: Public domain W3C validator