| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmrnm | GIF version | ||
| Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmmrnm | ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4373 | . . . . 5 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} | |
| 2 | 1 | eleq2i 2145 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 3 | 2 | exbii 1536 | . . 3 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 4 | abid 2069 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧) | |
| 5 | 4 | exbii 1536 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 6 | 3, 5 | bitri 182 | . 2 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 7 | dfrn2 4541 | . . . . 5 ⊢ ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} | |
| 8 | 7 | eleq2i 2145 | . . . 4 ⊢ (𝑧 ∈ ran 𝐴 ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 9 | 8 | exbii 1536 | . . 3 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 10 | abid 2069 | . . . . 5 ⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧) | |
| 11 | 10 | exbii 1536 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧∃𝑥 𝑥𝐴𝑧) |
| 12 | excom 1594 | . . . 4 ⊢ (∃𝑧∃𝑥 𝑥𝐴𝑧 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) | |
| 13 | 11, 12 | bitri 182 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 14 | 9, 13 | bitri 182 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 15 | eleq1 2141 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴 ↔ 𝑦 ∈ ran 𝐴)) | |
| 16 | 15 | cbvexv 1836 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| 17 | 6, 14, 16 | 3bitr2i 206 | 1 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∃wex 1421 ∈ wcel 1433 {cab 2067 class class class wbr 3785 dom cdm 4363 ran crn 4364 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: rnsnm 4807 |
| Copyright terms: Public domain | W3C validator |