ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el GIF version

Theorem dmsn0el 4810
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4391 . . . . 5 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
21con2i 589 . . . 4 (∅ ∈ 𝐴 → ¬ 𝐴 ∈ (V × V))
3 dmsnm 4806 . . . 4 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3sylnib 633 . . 3 (∅ ∈ 𝐴 → ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
5 alnex 1428 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ dom {𝐴})
64, 5sylibr 132 . 2 (∅ ∈ 𝐴 → ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
7 eq0 3266 . 2 (dom {𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {𝐴})
86, 7sylibr 132 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1282   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  c0 3251  {csn 3398   × cxp 4361  dom cdm 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-dm 4373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator