| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnm | GIF version | ||
| Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmsnm | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 4420 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2604 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm 4550 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
| 4 | df-br 3786 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
| 5 | vex 2604 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 2, 5 | opex 3984 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 7 | 6 | elsn 3414 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
| 8 | eqcom 2083 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
| 9 | 4, 7, 8 | 3bitri 204 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
| 10 | 9 | exbii 1536 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| 11 | 3, 10 | bitr2i 183 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
| 12 | 11 | exbii 1536 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 13 | 1, 12 | bitri 182 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 {csn 3398 〈cop 3401 class class class wbr 3785 × cxp 4361 dom cdm 4363 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-dm 4373 |
| This theorem is referenced by: rnsnm 4807 dmsn0 4808 dmsn0el 4810 relsn2m 4811 |
| Copyright terms: Public domain | W3C validator |