ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elop GIF version

Theorem elop 3986
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1 𝐴 ∈ V
elop.2 𝐵 ∈ V
elop.3 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4 𝐵 ∈ V
2 elop.3 . . . 4 𝐶 ∈ V
31, 2dfop 3569 . . 3 𝐵, 𝐶⟩ = {{𝐵}, {𝐵, 𝐶}}
43eleq2i 2145 . 2 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}})
5 elop.1 . . 3 𝐴 ∈ V
65elpr 3419 . 2 (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
74, 6bitri 182 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
Colors of variables: wff set class
Syntax hints:  wb 103  wo 661   = wceq 1284  wcel 1433  Vcvv 2601  {csn 3398  {cpr 3399  cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407
This theorem is referenced by:  relop  4504  bdop  10666
  Copyright terms: Public domain W3C validator