ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg GIF version

Theorem otexg 3985
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg ((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3408 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opexg 3983 . . . 4 ((𝐴𝑈𝐵𝑉) → ⟨𝐴, 𝐵⟩ ∈ V)
3 opexg 3983 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
42, 3sylan 277 . . 3 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
51, 4syl5eqel 2165 . 2 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
653impa 1133 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433  Vcvv 2601  cop 3401  cotp 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-ot 3408
This theorem is referenced by:  euotd  4009
  Copyright terms: Public domain W3C validator