ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn2g GIF version

Theorem elrn2g 4543
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrn2g (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elrn2g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3571 . . . 4 (𝑦 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐴⟩)
21eleq1d 2147 . . 3 (𝑦 = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
32exbidv 1746 . 2 (𝑦 = 𝐴 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
4 dfrn3 4542 . 2 ran 𝐵 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐵}
53, 4elab2g 2740 1 (𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wex 1421  wcel 1433  cop 3401  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  elrng  4544  fvelrn  5319  fo2ndf  5868
  Copyright terms: Public domain W3C validator