ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2 GIF version

Theorem opeq2 3571
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opeq2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2141 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
21anbi2d 451 . . . . 5 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V)))
3 eqidd 2082 . . . . . . 7 (𝐴 = 𝐵 → {𝐶} = {𝐶})
4 preq2 3470 . . . . . . 7 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
53, 4preq12d 3477 . . . . . 6 (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}})
65eleq2d 2148 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
72, 6anbi12d 456 . . . 4 (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
8 df-3an 921 . . . 4 ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}))
9 df-3an 921 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
107, 8, 93bitr4g 221 . . 3 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
1110abbidv 2196 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})})
12 df-op 3407 . 2 𝐶, 𝐴⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})}
13 df-op 3407 . 2 𝐶, 𝐵⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}
1411, 12, 133eqtr4g 2138 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  {cab 2067  Vcvv 2601  {csn 3398  {cpr 3399  cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407
This theorem is referenced by:  opeq12  3572  opeq2i  3574  opeq2d  3577  oteq2  3580  oteq3  3581  breq2  3789  cbvopab2  3852  cbvopab2v  3855  opthg  3993  eqvinop  3998  opelopabsb  4015  opelxp  4392  opabid2  4485  elrn2g  4543  opeldm  4556  opeldmg  4558  elrn2  4594  opelresg  4637  iss  4674  elimasng  4713  issref  4727  dmsnopg  4812  cnvsng  4826  elxp4  4828  elxp5  4829  dffun5r  4934  funopg  4954  f1osng  5187  tz6.12f  5223  fsn  5356  fsng  5357  fvsng  5380  oveq2  5540  cbvoprab2  5597  ovg  5659  opabex3d  5768  opabex3  5769  op1stg  5797  op2ndg  5798  op1steq  5825  dfoprab4f  5839  tfrlemibxssdm  5964  xpsnen  6318  xpassen  6327  elreal  6997  ax1rid  7043  fseq1p1m1  9111
  Copyright terms: Public domain W3C validator